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Introduction

● Certain systems when excited by an
external input dissipate the stored energy
in the form of vibrations at its natural
frequencies constrained by its geometry
and composition
● Guitar String
● Optical resonator: Light trapped using

reflecting boundaries
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Introduction

● Simulating a system governed by partial differential equations is computationally
intensive

● Hardware is limited for the size of systems that need to be simulated and solved

● Quasi-Normal Modes approach requires much less computation than solving the partial
differential equations

● The presentation is towards understanding and identifying the QNMs for such systems
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Normal Modes

Normal Modes
● Systems such as guitar strings releases energy

as vibrations only at one frequency in a
pattern called the mode of the system at that
frequency

● Electric field in an optical cavity when excited
by inputs of different frequencies

● When input contains more of these
frequencies, output is the sum of modes at
those frequencies

● Vibrations of different
frequencies undergo different
level of damping

● The frequencies for which the
damping is small are called
natural frequencies

● The phenomena is called
resonance

6 / 48



Normal Modes

Normal Modes
● Systems such as guitar strings releases energy

as vibrations only at one frequency in a
pattern called the mode of the system at that
frequency

● Electric field in an optical cavity when excited
by inputs of different frequencies

● When input contains more of these
frequencies, output is the sum of modes at
those frequencies

ω1 → u1 =

ω2 → u2 =

ω3 → u3 =

E
E
le
ct
ri
c
F
ie
ld

(E
)

E

Cavity Space

7 / 48



Normal Modes

Normal Modes
● Systems such as guitar strings releases energy

as vibrations only at one frequency in a
pattern called the mode of the system at that
frequency

● Electric field in an optical cavity when excited
by inputs of different frequencies

● When input contains all of these frequencies,
output is the sum of modes at those
frequencies
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Normal Modes and Natural Frequencies

● It is the motion of the field inside the system at its natural frequencies

● The associated natural frequencies are real

● Completely describes the behavior of a system (Modes are complete)

● For inputs containing multiple natural frequency, output is the sum of modes at that
frequencies

● This means that some modes are more dominant than others in determining the
solution

● Reduces the computation requirements
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Open System

● System loses energy to infinity

● Damping can’t be accurately modeled
using the normal modes E
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Quasi Normal Modes

● The modes of such open system are called Quasi-Normal Modes

● They have complex eigenvalues with imaginary part being the damping in the system

● Doesn’t fit the definition of Normal modes because of the complex frequencies

● Its ability to completely describe a system in terms of QNM expansion has been
observed experimentally
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QNM Completeness

Gold Nano-Rod Experiment

Theory of spontaneous optical emission by C. Sauvan

● The decay rate of two gold nano-rods was
modeled using the sum of responses of the
individual gold nano-rods in terms of their
QNMs

● QNMs are a powerful tool in representing a
system governed by small number of resonant
modes

● A discretized system has several modes

● It is a difficult task to identify the QNMs
among those modes
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Objective

● To obtain the Modes of a chosen system

● To obtain a structure of the modes and identify the QNMs

● To construct the solution using the Quasi-Normal Modes containing the input
frequency
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Implementation

Design an Electromagnetic System Discretize It

Obtain the ModesProceed to identify and
study the QNMs
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Electromagnetic System

y = 0

, ��2

, ��1

y = Ly = ysource y = yslab
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Medium 1 Medium 2

● A one-dimensional EM system with a slab and a source is considered

● Loss in the system is represented by electrical conductivity σ

● Medium parameters are the electrical permittivity ε2, magnetic permeability µ and the
slab width d
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Electromagnetic System

● An analytical solution is available in the
literature

● Scattering Poles can be obtained
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Discretization
One dimensional Maxwell equation governing the EM waves inside the system are:

Maxwell Equations

∂yHx + σEz + εr∂tEz = −J ext
z

∂yEz + µr∂tHx = −Kext
x

● Finite-Difference approach is used

● The system is discretized on a grid like
structure
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System Equation

Discretized model of the system is (A + sI )f = −q, A =M−1(D + S)
Solution f(t) = Ve−λtc
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Matrix A for a lossless system (σ = 0)

● Eigenvalues of the matrix A are purely
imaginary

● From our definition of the system
equations, it shows a purely oscillatory
behavior with no damping.

● Waves oscillate forever without decaying
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Reflections

Truncation with PEC conditions creates a boundary that causes reflections.

● Discretized system not identical to
the open system

● Outgoing waves getting reflected
instead of leaking to infinity

● An absorbing layer called a Perfectly
Matched Layer is implemented

● A PML simulates the extension to
infinity.
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PML

Truncation with PEC conditions creates a boundary that causes reflections.

● Discretized system not identical to
the open system

● Outgoing waves getting reflected
instead of leaking to infinity

● An absorbing layer called a Perfectly
Matched Layer is implemented

● A PML simulates the extension to
infinity.
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Modified System Equation

Discretized System with PML Implemented

It can be shown that even after the addition of
PML, the system equation can still be expressed
as:

(A + sI )f = −q,
where A =M−1(D + P + S)

● Eigenvalues of matrix A shifts to a region of
higher damping
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Modes

● New modes were introduced because of
discretization and introduction of PML

● We observe the eigenvalue distribution and its
eigenvectors as the system parameters are changed

● Slab Width

● PML Length

● Loss σ in the slab
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Slab Width

● The red stripe is the scattering poles calculated
from the analytical model

● There are multiple stripes

● The left stripe overlapping with the scattering
poles are the QNMs

● The slab width is increased by shifting the right
end of the slab

● On increasing the slab width, the middle stripe
does not change but the other two move apart

● We observe the eigenvectors of the different
stripes

1 Left Stripe
2 Middle Stripe
3 Right Stripe
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Slab Width

● The red stripe is the scattering poles calculated
from the analytical model

● There are three distinct stripes

● On increasing the slab width, the middle stripe
does not change but the other two move apart

● We observe the eigenvectors of the different
stripes

1 Left Stripe - Eigenvectors are spread over the
entire region originating from the slab

2 Middle Stripe
3 Right Stripe
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Slab Width

● The red stripe is the scattering poles calculated
from the analytical model

● There are three distinct stripes

● On increasing the slab width, the middle stripe
does not change but the other two move apart

● We observe the eigenvectors of the different
stripes

1 Left Stripe
2 Middle Stripe - It shows wave propagating in the

left direction originating from the slab
3 Right Stripe
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Slab Width

● The red stripe is the scattering poles calculated
from the analytical model

● There are three distinct stripes

● On increasing the slab width, the middle stripe
does not change but the other two move apart

● We observe the eigenvectors of the different
stripes

1 Left Stripe
2 Middle Stripe
3 Right Stripe - It shows wave propagating in the

right direction originating from the right end of
the slab
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Modes

● New modes were introduced because of
discretization and introduction of PML

● We observe the eigenvalue distribution and its
eigenvectors as the system parameters are changed

● Slab Width

● PML Length

● Loss σ in the slab
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PML Length

● As PML Length is increased, more
eigenvalues separate in the region of
horizontal stripe

● A greater part of the system falls inside the
damping region of PML

● The eigenvector corresponding to the
eigenvalue in the horizontal stripe is localized
in the PML area
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PML Length

● As PML Length is increased, more
eigenvalues separate in the region of
horizontal stripe

● A greater part of the system falls inside the
damping region of PML

● The eigenvector corresponding to the
eigenvalue in the horizontal stripe is localized
in the PML area
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Modes due to lossy medium

● PML is a lossy layer by design which attenuates the waves in a small region with
minimal reflections

● In this case, a lossy slab should have a similar behavior

● Therefore, we begin with add more loss to the slab and observe the behavior
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Loss σ in the slab

● Loss in the slab is increased

● New eigenvalues start separating into the
horizontal stripe

● The corresponding eigenvalues are localized in the
slab area
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Loss σ in the slab

● Loss in the slab is increased

● New eigenvalues start separating into the
horizontal stripe

● The corresponding eigenvalues are
localized in the slab area
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Conclusions

With these results, we have:

● Clustered the eigenvalues

● Established that PML modes behave
similar to lossy modes

● Found a structure of the lossy modes

● Identified the QNMs 0 10 20 30 40 50 60 70 80 90
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Reconstructing the solution

We will reconstruct the wave-field solution
using the identified QNMs. We take different
regions of the QNMs for this purpose. The
three regions are:

● Both end of the spectrum excluding the
PML modes

● Eigenvalues with the positive imaginary
part

● Eigenvalues with the negative imaginary
part

● Entire spectrum of eigenvalues excluding
the region around the frequency of the
input pulse
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Reconstructing the solution

We will reconstruct the wave-field solution
using the identified QNMs. We take different
regions of the QNMs for this purpose. The
three regions are:

● Both end of the spectrum excluding the
PML modes

● Eigenvalues with the positive imaginary
part

● Eigenvalues with the negative imaginary
part

● Entire spectrum of eigenvalues excluding
the region around the frequency of the
input pulse
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Reconstructing the solution

We will reconstruct the wave-field solution
using the identified QNMs. We take different
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Reconstructing the solution

We will reconstruct the wave-field solution
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We will reconstruct the wave-field solution
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Conclusions

● Eigenvalue spectrum was clustered into different regions of QNMs and lossy modes

● Lossy regions come out as a separate region in the eigenvalue spectrum if the loss is
high compared to other regions

● The separated region is sparsely populated

● High loss regions have their corresponding eigenvectors localized instead of being
spread out in the entire region

● QNMs corresponding to the eigenfrequencies lying in the bandwidth of the input pulse
is necessary for reconstructing the solution
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Future work

● Using the structure of the QNMs and PMLs to find the relevant modes

● Creating a filter to have a faster convergence to the QNMs

● Using a different system with fewer number of scattering poles
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Thank You!
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