Identification of Quasi-Normal Modes

Pranav Prakash
Delft University of Technology, The Netherlands

September 9, 2019

Supervisor: dr.ir. Rob F. Remis

Committee Members: dr. Neil V. Budko and dr. ir. J. T. Zimmerling

Agenda

- Introduction
- Normal Modes
- Open Systems
- QNMs
- Objective of the thesis
- Experiments and Results
- Conclusion
- Future Work

Introduction

- Certain systems when excited by an external input dissipate the stored energy in the form of vibrations at its natural frequencies constrained by its geometry and composition
- Guitar String
- Optical resonator: Light trapped using reflecting boundaries

Introduction

- Simulating a system governed by partial differential equations is computationally intensive
- Hardware is limited for the size of systems that need to be simulated and solved
- Quasi-Normal Modes approach requires much less computation than solving the partial differential equations
- The presentation is towards understanding and identifying the QNMs for such systems

Agenda

- Introduction
- Normal Modes
- Open Systems
- QNMs
- Objective of the thesis
- Experiments and Results
- Conclusion
- Future Work

Normal Modes

```
Normal Modes
    - Systems such as guitar strings releases energy as vibrations only at one frequency in a pattern called the mode of the system at that frequency
- Electric field in an optical cavity when excited by inputs of different frequencies
- When input contains more of these frequencies, output is the sum of modes at those frequencies
```

- Vibrations of different frequencies undergo different level of damping
- The frequencies for which the damping is small are called natural frequencies
- The phenomena is called resonance

Normal Modes

Normal Modes

- Systems such as guitar strings releases energy as vibrations only at one frequency in a pattern called the mode of the system at that frequency by inputs of different frequencies
- When input contains more of these
frequencies, output is the sum of modes at those frequencies

$$
\omega_{1} \rightarrow u_{1}=
$$

$\omega_{2} \rightarrow u_{2}=$

Cavity Space

Normal Modes

Normal Modes

- Systems such as guitar strings releases energy as vibrations only at one frequency in a pattern called the mode of the system at that frequency
- Electric field in an optical cavity when excited by inputs of different frequencies
- When input contains all of these frequencies, output is the sum of modes at those frequencies

region

Normal Modes and Natural Frequencies

- It is the motion of the field inside the system at its natural frequencies
- The associated natural frequencies are real
- Completely describes the behavior of a system (Modes are complete)
- For inputs containing multiple natural frequency, output is the sum of modes at that frequencies
- This means that some modes are more dominant than others in determining the solution
- Reduces the computation requirements

Agenda

- Introduction
- Normal Modes
- Open Systems
- QNMs
- Objective of the thesis
- Experiments and Results
- Conclusion
- Future Work

Open System

- System loses energy to infinity
- Damping can't be accurately modeled using the normal modes

Agenda

- Introduction
- Normal Modes
- Open Systems
- QNMs
- Objective of the thesis
- Experiments and Results
- Conclusion
- Future Work

Quasi Normal Modes

- The modes of such open system are called Quasi-Normal Modes
- They have complex eigenvalues with imaginary part being the damping in the system
- Doesn't fit the definition of Normal modes because of the complex frequencies
- Its ability to completely describe a system in terms of QNM expansion has been observed experimentally

QNM Completeness

Gold Nano-Rod Experiment

Theory of spontaneous optical emission by C. Sauvan

- The decay rate of two gold nano-rods was modeled using the sum of responses of the individual gold nano-rods in terms of their QNMs
- QNMs are a powerful tool in representing a system governed by small number of resonant modes
- A discretized system has several modes
(a)

 among those modes

QNM Completeness

Gold Nano-Rod Experiment
Theory of spontaneous optical emission by C. Sauvan

- The decay rate of two gold nano-rods was modeled using the sum of responses of the individual gold nano-rods in terms of their QNMs
- QNMs are a powerful tool in representing a system governed by small number of resonant modes
- A discretized system has several modes
- It is a difficult task to identify the QNMs
(a)

(b)
 among those modes

Agenda

- Introduction
- Resonant Systems
- Normal Modes
- Open Systems
- QNMs
- Objective of the thesis
- Experiments and Results
- Conclusion
- Future Work

Objective

- To obtain the Modes of a chosen system
- To obtain a structure of the modes and identify the QNMs
- To construct the solution using the Quasi-Normal Modes containing the input frequency

Implementation

Electromagnetic System

- A one-dimensional EM system with a slab and a source is considered
- Loss in the system is represented by electrical conductivity σ
- Medium parameters are the electrical permittivity ϵ_{2}, magnetic permeability μ and the slab width d

Electromagnetic System

- An analytical solution is available in the literature
- Scattering Poles can be obtained

Discretization

One dimensional Maxwell equation governing the EM waves inside the system are:

Maxwell Equations

$$
\begin{aligned}
\partial_{y} \mathcal{H}_{x}+\sigma \mathcal{E}_{z}+\epsilon_{r} \partial_{t} \mathcal{E}_{z} & =-\mathcal{J}_{z}^{e x t} \\
\partial_{y} \mathcal{E}_{z}+\mu_{r} \partial_{t} \mathcal{H}_{x} & =-\mathcal{K}_{x}^{\text {ext }}
\end{aligned}
$$

- Finite-Difference approach is used

- The system is discretized on a grid like structure

System Equation

Discretized model of the system is $(A+s l) \mathbf{f}=-\mathbf{q}, A=M^{-1}(D+S)$
Solution $\mathbf{f}(t)=V e^{-\lambda t} \mathbf{c}$

Matrix A for a lossless system $(\sigma=0)$

- Eigenvalues of the matrix A are purely imaginary
- From our definition of the system equations, it shows a purely oscillatory behavior with no damping.
- Waves oscillate forever without decaying

Reflections

Truncation with PEC conditions creates a boundary that causes reflections.

- Discretized system not identical to the open system
- Outgoing waves getting reflected instead of leaking to infinity
- An absorbing layer called a Perfectly Matched Layer is implemented
- A PML simulates the extension to infinity.

Region

PML

Truncation with PEC conditions creates a boundary that causes reflections.

- Discretized system not identical to the open system
- Outgoing waves getting reflected instead of leaking to infinity
- An absorbing layer called a Perfectly Matched Layer is implemented
- A PML simulates the extension to infinity.

Region

Modified System Equation

Discretized System with PML Implemented

 It can be shown that even after the addition of PML, the system equation can still be expressed as:$$
(A+s l) f=-q,
$$

where $A=M^{-1}(D+P+S)$

- Eigenvalues of matrix A shifts to a region of higher damping

Real (λ)

Agenda

- Introduction
- Resonant Systems
- Normal Modes
- Open Systems
- QNMs
- Objective of the thesis
- Experiments and Results
- Conclusion
- Future Work

Modes

- New modes were introduced because of discretization and introduction of PML
- We observe the eigenvalue distribution and its eigenvectors as the system parameters are changed
- Slab Width
- PML Length
- Loss σ in the slab

Slab Width

- The red stripe is the scattering poles calculated from the analytical model
- There are multiple stripes
- The left stripe overlapping with the scattering poles are the QNMs
- The slab width is increased by shifting the right end of the slab
- On increasing the slab width, the middle stripe does not change but the other two move apart
- We observe the eigenvectors of the different stripes
(1) Left Stripe
(2) Middle Stripe
(3) Right Stripe

Real (λ)

Slab Width

- The red stripe is the scattering poles calculated from the analytical model
- There are three distinct stripes
- On increasing the slab width, the middle stripe does not change but the other two move apart
- We observe the eigenvectors of the different stripes
(1) Left Stripe - Eigenvectors are spread over the entire region originating from the slab
(2) Middle Stripe

(3) Right Stripe

Slab Width

- The red stripe is the scattering poles calculated from the analytical model
- There are three distinct stripes
- On increasing the slab width, the middle stripe does not change but the other two move apart
- We observe the eigenvectors of the different stripes
(1) Left Stripe
(2) Middle Stripe - It shows wave propagating in the left direction originating from the slab

(3) Right Stripe

Slab Width

- The red stripe is the scattering poles calculated from the analytical model
- There are three distinct stripes
- On increasing the slab width, the middle stripe does not change but the other two move apart
- We observe the eigenvectors of the different stripes
(1) Left Stripe
(2) Middle Stripe
(3) Right Stripe - It shows wave propagating in the right direction originating from the right end of the slab

Modes

- New modes were introduced because of discretization and introduction of PML
- We observe the eigenvalue distribution and its eigenvectors as the system parameters are changed
- Slab Width
- PML Length
- Loss σ in the slab

PML Length

- As PML Length is increased, more eigenvalues separate in the region of horizontal stripe
- A greater part of the system falls inside the damping region of PML
- The eigenvector corresponding to the
eigenvalue in the horizontal stripe is localized
in the PML area

PML Length

- As PML Length is increased, more eigenvalues separate in the region of horizontal stripe
- A greater part of the system falls inside the damping region of PML
- The eigenvector corresponding to the eigenvalue in the horizontal stripe is localized in the PML area

Modes due to lossy medium

- PML is a lossy layer by design which attenuates the waves in a small region with minimal reflections
- In this case, a lossy slab should have a similar behavior
- Therefore, we begin with add more loss to the slab and observe the behavior

Loss σ in the slab

- Loss in the slab is increased
- New eigenvalues start separating into the horizontal stripe
- The corresponding eigenvalues are localized in the slab area

Loss σ in the slab

- Loss in the slab is increased
- New eigenvalues start separating into the horizontal stripe
- The corresponding eigenvalues are localized in the slab area

Conclusions

With these results, we have:

- Clustered the eigenvalues
- Established that PML modes behave similar to lossy modes
- Found a structure of the lossy modes
- Identified the QNMs

Reconstructing the solution

We will reconstruct the wave-field solution using the identified QNMs. We take different regions of the QNMs for this purpose. The three regions are:

- Both end of the spectrum excluding the PML modes
- Eigenvalues with the positive imaginary part
- Eigenvalues with the negative imaginary part
- Entire spectrum of eigenvalues excluding the region around the frequency of the input pulse

Figure: Finite Difference solution for an input of a chosen frequency

Reconstructing the solution

We will reconstruct the wave-field solution using the identified QNMs. We take different regions of the QNMs for this purpose. The three regions are:

- Both end of the spectrum excluding the PML modes
- Eigenvalues with the positive imaginary part
- Eigenvalues with the negative imaginary part

- Entire spectrum of eigenvalues excluding the region around the frequency of the input pulse

Reconstructing the solution

We will reconstruct the wave-field solution using the identified QNMs. We take different regions of the QNMs for this purpose. The three regions are:

- Both end of the spectrum excluding the PML modes
- Eigenvalues with the positive imaginary part
- Eigenvalues with the negative imaginary part

- Entire spectrum of eigenvalues excluding the region around the frequency of the input pulse

Reconstructing the solution

We will reconstruct the wave-field solution using the identified QNMs. We take different regions of the QNMs for this purpose. The three regions are:

- Both end of the spectrum excluding the PML modes
- Eigenvalues with the positive imaginary part
- Eigenvalues with the negative imaginary part

- Entire spectrum of eigenvalues excluding the region around the frequency of the input pulse

Reconstructing the solution

We will reconstruct the wave-field solution using the identified QNMs. We take different regions of the QNMs for this purpose. The three regions are:

- Both end of the spectrum excluding the PML modes
- Eigenvalues with the positive imaginary part
- Eigenvalues with the negative imaginary part

- Entire spectrum of eigenvalues excluding the region around the frequency of the input pulse

Agenda

- Introduction
- Resonant Systems
- Normal Modes
- Open Systems
- QNMs
- Objective of the thesis
- Experiments and Results
- Conclusion
- Future Work

Conclusions

- Eigenvalue spectrum was clustered into different regions of QNMs and lossy modes
- Lossy regions come out as a separate region in the eigenvalue spectrum if the loss is high compared to other regions
- The separated region is sparsely populated
- High loss regions have their corresponding eigenvectors localized instead of being spread out in the entire region
- QNMs corresponding to the eigenfrequencies lying in the bandwidth of the input pulse is necessary for reconstructing the solution

Agenda

- Introduction
- Resonant Systems
- Normal Modes
- Open Systems
- QNMs
- Objective of the thesis
- Experiments and Results
- Conclusion
- Future Work

Future work

- Using the structure of the QNMs and PMLs to find the relevant modes
- Creating a filter to have a faster convergence to the QNMs
- Using a different system with fewer number of scattering poles

Thank You!

