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Abstract

Quasi-Normal Modes (QNMs) are a key concept in reduced-order
models. In this thesis, we use Finite-Difference approach to create
a discretized model of an open electromagnetic system in order to
identify its QNMs and the Perfectly Matched Layer (PML) modes.
We develop a structure of the QNMs and the PML modes and iden-
tify different regions of the eigenvalue distribution in our system. We
validate the idea of dominant QNMs by using the identified QNMs to
get the solution that was obtained using the Finite-Difference method.
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Introduction 1
Resonant systems are a class of system that are bounded on the spatial domain whose
response has relative maxima for inputs of certain frequencies (natural frequencies of
the system). When perturbed by one of these frequencies, the system oscillates in a
motion given by its normal modes. A natural mode of a system is the pattern in which
the entire resonating system oscillates. This pattern is defined by the geometry and the
imposed boundary conditions on the system. Under the influence of input, the motion
of the system is the superposition of its modes corresponding to the frequencies present
in the input signal. However, these normal modes exist only for systems with a high Q
factor (Quality factor of the resonator, higher Q factor means smaller damping [11]).
Most of the practical systems in real life are leaky, which means that they continuously
lose energy to infinity. The domain for such an open system extends to the whole
universe and their modes are purely continuous [10]. The damping in these resonant
systems can’t be accurately modeled using the normal modes and therefore the concept
of Quasi Normal Modes with complex frequencies is used [3]. These modes much like
the normal modes depend upon the structure and the composition of the medium and
not on the frequency of the input signal.

Certain classes of systems on reacting with light dissipate energy as oscillating elec-
tromagnetic (EM) waves. Nano-resonators are an example, where the use of a suitable
input pulse can produce a resonant EM field. For these systems, it is important to find
the right excitation frequency for the material in use. Once a proper frequency which
is characterized by the intrinsic property of the material is found, an appropriate input
signal can be used for the light-matter interaction [6]. These excitation frequencies are
found by solving for eigenvalues of the Maxwell equations without any external source.

There are other problems in the domain of wave-field imaging, nano-optics, plasmon
resonators, identification of resonant modes in nano-resonators, etc, that requires the
solution of Maxwell equations in the respective media for different frequencies and
parameters. For media with complex geometries, where it is not possible to get an
analytical solution, the system is solved by using popular techniques such as Finite-
Difference Time-Domain (FDTD), Finite Element Method (FEM), etc after discretizing
it. The discretization is done on a nano-scale to accommodate for the Nyquist frequency
which should ideally be more than double the bandwidth of the input pulse. The
discretization process thus results in millions of data points which is difficult to handle
even on a supercomputer. This calls for a more intelligent and robust way to handle
this problem. If the QNMs of an open system are known, the evolution of EM waves
generated by an input can be modeled as a linear combination of these QNMs instead
of solving for the computationally intensive Maxwell’s equations.

Another problem in working with such open systems is simulating them on a
spatially-limited domain. Creating an artificial boundary results in outgoing waves
getting reflected because such boundaries have the same effect as having a medium
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with different properties than its surrounding. Therefore, certain mathematical tricks
are employed to simulate such systems in a finite environment to generate the actual
system output. One way to do that is by using a boundary layer called a Perfectly
Matched Layer where the outgoing fields are damped. These methods and the dis-
cretization process will be discussed further in this report.

This thesis deals with wave-field problems in the nano-optics domain. These sys-
tems when discretized can produce system matrices in the order of several million and
may take a considerable amount of time to solve through classical methods. In this
respect, the resonant property of the systems can be exploited to develop smarter solu-
tions which can drastically reduce the computational cost. It has been experimentally
observed that QNMs can be used to accurately describe the output of a system and if
known, can be used to construct the solution without solving Maxwell equations [8].
Another important result from these experiments is that only a few dominant QNMs
are sufficient to trace the actual response of the system for a wide range of frequencies.

Several experiments have been performed over time to verify this result. C. Sauvan
in his paper on ”Theory of the Spontaneous Optical Emission of Nanosize Photonic
and Plasmonic Resonators” [9] concluded that the spontaneous decay rate for a single
gold nano-rod calculated using numerical data was approximated by a single QNM
to an excellent degree. The experiment was further verified by using a more complex
system of two gold nano-rods placed close to each other. The decay rate calculated using
numerical data was found to agree with what was calculated using the sum of responses
of the QNM of each of the nano-rods considered independently. In another paper by
Remi Faggiani on modal analysis [6], it was concluded that the temporal response of
the scattered wave in a gold nano-rod could be approximated using a single dominant
QNM and an even higher degree of agreement could be found with the experimental
data using three dominant QNMs.

The focus of the project will be to find these QNMs, separate them from the Perfectly
Matched Layer (PML) modes, to study and possibly obtain a structure of these modes.
The analysis can help speed up the calculation of eigenmodes for a more complex
system. These modes are calculated in a Krylov subspace for larger systems like the
one discussed in this thesis for computational efficiency. Previous works in this domain
were heavily focused on Polynomial Krylov Subspace (PKS) and Extended Krylov
Subspace (EKS) [4] because of the fewer computation requirement. Another method
which is of interest regarding this thesis is the Rational Krylov Subspace (RKS). It
is generally computationally more intensive than the other two because, while PKS
and EKS converge to eigenvalues iteratively starting from the largest eigenvalue, RKS
attempts to converge to several eigenvalues simultaneously around a region of chosen
shifts by inverting the system matrix [13]. This means that if the shifted points are close
to the actual eigenvalues of the matrix, RKS will converge much faster than the other
two methods (PKS and EKS). Therefore, an advantage of RKS process concerning the
result of this thesis is that once there is a suitable method to identify the QNMs, the
RKS method can be used to converge to such modes efficiently by choosing appropriate
shifts.

This report is structured into five chapters. It begins by developing a geometrically
simple one-dimensional slab system which will be used throughout the report. In the
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first chapter, we obtain the true scattering poles of the system through continuous
analysis of Maxwell’s equation, which governs the behavior of electromagnetic waves.
Thereafter, a normalized discrete model for the same system is developed in chapter 3.
Since the discretized system is to be simulated as an open system, the model is stretched
to infinity using a PML in chapter 4. Then, the report finishes with experiment results
and conclusion on the Quasi-Normal Modes of the discretized system in the next two
chapters.
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Continuous Analysis 2
2.1 Introduction

This chapter begins by developing a notion of Maxwell equations in a continuous space
and time domain which governs the behavior of Electromagnetic (EM) fields. These
equations will be used to solve for electric and magnetic fields in a geometrically simple
system which will be used for further analysis in the report in subsequent chapters. In
section 2.2.2, we calculate the scattering poles of the system. In this way, we develop a
ground truth using an open system against which the results of the discrete model can
be compared for validation in later stages.

2.2 Slab System

In this section, we introduce a system consisting of a slab-like medium to begin studying
the modes of an EM system. Before coming to the slab system, we will introduce the
Maxwell equations which are

−∇×H + σE + εδtE = −J ext (2.1)

and

∇× E + µδtH = −Kext, (2.2)

where E and H are the electric and the magnetic field vectors. The time varying J ext

and Kext are the external electric and magnetic current density respectively and σ is the
electrical conductivity, which depends on the medium. ε and µ are the electric permit-
tivity and magnetic permeability which are also dependent on the material properties
of the medium. These equations along with the imposed boundary conditions govern
the evolution of field quantities E(x, t) and H(x, t) with space and time.

Now that the notion of Maxwell equations has been established, we can proceed to
model a system with a source where we can study the evolution of field quantities E
and H in space for different frequencies. The experiment is based on a slab system
which has a certain permittivity profile (a constant > 1 in the simplest case). A sketch
of the system is shown in figure 2.1.
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Figure 2.1: The slab system

The rectangular region is a slab of a constant permittivity surrounded by the vacuum
of permittivity one shown as the region of white space. A Gaussian pulse is generated
at a certain distance from the slab shown as the triangular region. The slab is of
width d and the medium has a permittivity ε2 and electrical conductivity σ. Both the
regions have a magnetic permeability µ. The advantage of this configuration is that
the problem can be modeled using Maxwell’s equations and that an analytical solution
can be computed as discussed below.

In the one-dimensional system, the waves are propagating in y direction with the
source pointing in the z direction. The direction constraint implies that ∂z = ∂x = 0
in the Maxwell’s equations. Furthermore, the electric field will be oscillating in z
direction because the source is pointing in that direction. Using the above results
in equation 2.1 and 2.2, we are left with only Ez and Hx term that are non-zero.
Accounting for the directions of other field quantities, magnetic field density K for the
given one-dimensional problem is chosen to be pointing in the x direction. Now, the
one-dimensional Maxwell wave equations are given by:

∂yHx + σEz + εr∂tEz = −J ext
z (2.3)

and

∂yEz + µr∂tHx = −Kextx (2.4)

2.2.1 Analytical Equation

The analytical solution of the slab system can be calculated by solving for equation
2.3 and 2.4 along with the boundary conditions on the medium boundary. The electric
field in such a system so obtained is given below [12]:

Emedium = ei ×
(
A+e−γ2(x−xsource) + A−eγ2(x−xsource)

)
Ereflected = Reie

γ1(x−xsource)

6



Etransmitted = Teie
−γ1∗(x−xsource)

where ei is the field due to the source at any chosen origin. A+ and A− depend on the
permittivity of the medium and the surrounding, R is the reflection coefficient and T
is the transmission coefficient and are given by:

A+ =
2Y1

Y1+Y2

1−
(
Y1−Y2
Y1+Y2

)2
e−2γ2d

,

A− =

−2Y1(Y1−Y2)
(Y1+Y2)2

e−2γ2d

1−
(
Y1−Y2
Y1+Y2

)2
e−2γ2d

,

R =
Y1−Y2
Y1+Y2

(1− e−2γ2d)

1−
(
Y1−Y2
Y1+Y2

)2
e−2γ2d

and

T =

4Y1Y2
(Y1+Y2)2

e(γ1−γ2)d

1−
(
Y1−Y2
Y1+Y2

)2
e−2γ2d

,

where Y1 and Y2 are the electrical admittance in the open region(1) and and the slab
region(2) respectively given by:

Y1 =

√
ε1
µ

and

Y2 =

(
σ + sε2
sµ

) 1
2

The quantities γ1 = s
√
ε1µ and γ2 = [(σ + sε2)sµ)] are the propagation coefficients in

the respective medium (vacuum and slab).

2.2.2 Scattering Poles

Looking at the denominator of reflection, transmission, A+ and A− coefficients, it is

seen that the values blow up when
(
Y1−Y2
Y1+Y2

)2
e−2γ2d = 1. The complex frequencies at

which the equation is satisfied are termed as the scattering poles [5]. It is at these
poles that the resonance occurs and the inputs at these frequencies will dominate the
behavior of the system. The scattering poles can be calculated analytically for the

system in which the slab has σ = 0 because it allows the square term
(
Y1−Y2
Y1+Y2

)2
to be

independent of s. If σ 6= 0, the unknown term s is present in both the exponential and
the square term and the problem will then require a non-linear solver to obtain the

poles. To obtain the poles for σ = 0, let
(
Y1−Y2
Y1+Y2

)2
= K.

Then the scattering poles are given by:

Ke−2γ2d = 1,
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which gives

s =
ln K

φ
+ j

2nπ

φ
, for n = 0, 1, 2, · · ·

where we have taken φ = 2
√
ε2c
−1d and c = 1√

εoµo
.

The scattering poles are therefore located parallel to the imaginary axis.
With this result, we have found the solution for wave-field inside an open system and

established an idea of the nature of its scattering poles which were found to be countably
infinite. This result will later be used to draw a comparison with the eigenvalues of the
Finite-Difference model of the slab system in subsequent chapters.
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Discrete Model 3
In this chapter, we create a discretized model of the slab system used in the previous
chapter. We start with the normalization of the field quantities so that they are in
the same scale and the numerical stability is maintained. The slab system described
previously is an open system. For simulation purposes, we truncate the system with a
Perfectly Electrically Conducting (PEC) boundary conditions following which the sys-
tem is discretized in the spatial domain. Finally, the chapter concludes with discussions
on the properties of the discretized equations.

3.1 Normalization

For the normalization of the field quantities, we begin with general Maxwell equations
which are:

−∇×H + σE + εδtE = −J ext

∇× E + µδtH = −Kext

The field quantities, the external inputs and the medium parameters have been in-
troduced in the previous chapter and therefore, we begin directly with normalization
process by scaling the following quantities:

y → Ly′ and t→ c−1o Lt′ , (3.1)

where L is the length of the truncated space around the slab that will be used in the
simulation and co = 3 × 108 is the speed of light in vacuum. The normalized spatial
scale, therefore ranges from y′ = 0 to 1. Now, substituting the equation with the scaled
variables gives

−L−1∇′ ×H(Ly′, c−1o Lt′) + σ(Ly′)E(Ly′, c−1o Lt′) + εcoL
−1δt′E(Ly′, c−1o Lt′) =

−J ext(Lx′, c−1o Lt′)

=⇒ L−1∇′ × E(Ly′, c−1o Lt′) + µrµocoL
−1δt′H(Ly′, c−1o Lt′) = −Kext(Ly′, c−1o Lt′)

In obtaining the above equations, we have used the relations ε = εrεo, µ = µrµo and
co = 1√

µoεo
. Multiplying the equation throughout with L, it is obtained that:

Zo∇′ ×H + ZoLσE
′ + εrδt′E = −ZoLJ ext

∇′ × E + µ′rZoδt′H = −LKext,

9



where Zo =
√

µo
εo

is the electrical impedance. The normalized Maxwell equations thus

obtained can be written as:

∇′ ×H′ + σ′E ′ + εrδt′E ′ = −J ext′

∇′ × E ′ + µrδt′H′ = −Kext′,

where the field quantities on the normalized scale are related to the actual field values
through the following equations:

E ′ = E(Ly′, c−1o Lt′),

H′ = ZoH(Ly′, c−1o Lt′,

σ′ = LZoσ(LX ′),

J ext′ = LZoJ ext(Ly′, c−1o Lt′),

and

Kext′ = LKext(Ly′, c−1o Lt′)

From here onwards, the normalized field quantities will be used without the prime
symbol and unless specified otherwise, all the values are on the scaled time and dis-
tance.

3.2 Discretization

The slab system described in chapter 2 is truncated with a PEC boundary condition as
shown in figure 3.2. To make the finite domain model simulation-ready, it is discretized
on a primary and a dual grid. Electric fields are calculated on the primary grid and
magnetic field on the dual grid. The discretized equation so obtained is put in the form
of a state-space equation as described below.

For the one dimensional case, if the current source is in the z direction, only the
fields Ez and Hx are non zero and the wave travels in the y direction. Therefore, the
one dimensional Maxwell equations for a lossy medium are:

∂yHx + σEz + εr∂tEz = −J ext
z (3.2)

∂yEz + µr∂tHx = −Kextx (3.3)

The above equations can be written in the compact form as:

(D + S +M∂t)f = −q

where the medium matrices are

D =

[
0 ∂y
∂y 0

]
, S =

[
σ 0
0 0

]
and M =

[
εr 0
0 µr

]
and the field and source vectors are:

f =

[
Ez
Hx

]
and q =

[
J ext
z

Kextx

]
10



Figure 3.1: Electric and Magnetic field in a one-dimensional slab and the chosen directions
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Figure 3.2: Primary(o) and dual (×) nodes on the uniform grid (adapted from Laboratory of
Electromagnetic Research by Rob F. Remis)

For the discretization of the fields, a primary and dual grid is assumed on the y axis
as shown in figure 3.2. The primary grid is defined as:

Ωp
y = {yq, q = 0, 1, ...Q+ 1, y0 = 0, yQ+1 = ly}

and the corresponding step sizes are

δy;q = yq − yq−1 for q = 1, 2, ..., Q+ 1

The dual grid is defined as:

Ωd
y = {ŷ1, q = 1, 2, ...Q+ 1, 0 < ŷq < ly}

and the corresponding step sizes are:

δ̂y;q = ŷq+1 − ŷ1 for q = 1, 2, ..., Q

11



Maxwell’s equations on the discrete system are, therefore:

δyHx|y=yq + σ(yq)Ez(yq, t) + εr(yq)∂tEz(yq, t) = −J ext
z (yq, t)

for q = 1, 2, ..., Q and,

δyEz|y=ŷq + µ(ŷq)∂H(ŷq, t) = −Kextx (ŷq, t)

for q = 1, 2, ..., Q+ 1.

The spatial differentiation is discretized on one dimension using the following ap-
proximation:

δyHx|y=yq =
Hx(ŷq+1, t)−Hx(ŷq, t)

δ̂y;q
+ ξ(yq)

and

δyEz|y=ŷq =
Ez(yq, t)− Ez(yq−1, t)

δy;q
+ ξ(yq̂)

where ξ(y) is the error due to discretization at a point y.

Electric field Ez and magnetic field Hx is discretized on the primary and the dual
grid respectively as follows:

ez = [ez(y1, t), ez(y2, t), ..., ez(yQ, t)]
ᵀ

and

hx = [hx(ŷ1, t),hx(ŷ2, t), ...,hx(ŷQ+1, t)]
ᵀ

which are the finite domain approximations of the fields at points on the discrete
domain. Also, the Perfectly Conducting boundary condition means that on the primary
grid, ez(y0, t) = ez(yQ+1, t) = 0.

Now, writing Maxwell’s equation for some of the points on the discrete scale, it is
obtained that:

yq=1 |;
hx(ŷ2, t)− hx(ŷ1, t)

δ̂1
+ σ(y1)ez(y1, t) + εr(y1)∂tez(y1, t) = −jextz (y1, t)

yq=2 |;
hx(ŷ3, t)− hx(ŷ2, t)

δ̂2
+ σ(y2)ez(y2, t) + εr(y2)∂tez(y2, t) = −jextz (y2, t)

...

yq=Q |;
hx(ŷQ+1, t)− hx(ŷQ, t)

δ̂Q
+ σ(yQ)ez(yQ, t) + εr(yQ)∂tez(yQ, t) = −jextz (yQ, t)
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and

ŷq=1 |;
ez(y1, t)− 0

δ1
+ µr(ŷ1)∂thx(ŷ1, t) = −kextx (ŷ1, t)

ŷq=2 |;
ez(y2, t)− ez(y1, t)

δ2
+ µr(ŷ2)∂thx(ŷ2, t) = −kextx (ŷ2, t)

...

ŷq=Q+1 |;
0− ez(yQ, t)

δQ
+ µr(ŷQ)∂thx(ŷQ, t) = −kextx (ŷQ, t)

Using the above approximation for discretized differentiation and the boundary
conditions, the differentiation operator on the primary and dual grid is given by:

Ŷ =


−δ̂−1y:1 δ̂−1y:1

−δ̂−1y:2 δ̂−1y:2
· · ·

· · ·
−δ̂−1y:Q δ̂−1y:Q



Y =



δ−1y:1
−δ−1y:2 δ−1y:2

−δ−1y:3 δ−1y:3
· · ·

· · ·
−δ−1y:Q δ−1y:Q

−δ−1y:Q+1


The discrete Maxwell equations are now given by:

Ŷ hx +Mσez +Mε∂tez = −jextz

Y ez +Mµ∂thx = −kextz

and the compact form is now given by:

(D + S +Ms)f = −q,

where

D =

[
0 Ŷ
Y 0

]
, S =

[
Mσ 0
0 0

]
and M =

[
εr 0
0 µr

]
and all the variables are in the Laplace domain. On multiplying the whole equation by
M−1, it is obtained that:

(A+ sI)f = −b,

where, A = M−1(D + S) and b = M−1q. This form will now be used for further
computations. Here, b acts as the source. It can also be shown that A is skew-symmetric
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in the inner-product sense for a lossless system (S = 0) in free space (M = I) in the
case of which A = D.

The first step is observing that the differentiation matrix Y and Ŷ can be re-written
as a product of two matrices by introducing the step-size matrix and a bi-diagonal
matrix B.

The step size matrices are:

Ŵy =


δ̂y;1 0 0 · · · 0

0 δ̂y;2 0 · · · 0

0 0 δ̂y;3 · · · 0
...

...
. . .

...

0 0 0 · · · δ̂y;Q

 and Wy =


δy;1 0 0 · · · 0
0 δy;2 0 · · · 0
0 0 δy;3 · · · 0
...

...
. . .

...
0 0 0 · · · δy;Q+1


The bi-diagonal matrix BQ is Q by Q+ 1 matrix with all the diagonal entries as -1 and
the upper diagonal entries as 1. For example, a

B3 =

−1 1 0 0
0 −1 1 0
0 0 −1 1


Now, the differentiation matrix Y and Ŷ can be easily written as:

Ŷ = Ŵ−1
y BQ and Y = −W−1

y B
ᵀ
Q

Pre-multiplying both the expressions by Ŵ−1
y and W−1

y respectively and taking trans-
pose of the first expression and using the fact that the step-size matrices are the sym-
metric, diagonal matrices, it is obtained that:

(ŴyŶ )ᵀ = Bᵀ
Q and − (WyY ) = Bᵀ

Q

Thus, Ŷ ᵀŴy = −WyY . To extend this symmetry property to the matrix D and in turn
to the matrix A, following matrix is constructed,

W =

[
Ŵy 0
0 Wy

]
Using the result that Ŷ ᵀŴy = −WyY along with matrix W , it can be seen that:

DᵀW = −WD

which makes D a skew symmetrix matrix which has all imaginary eigenvalues and also
follows the law of conservation of energy [7]. Thus the field value obtained from using
only the D operator are purely oscillatory in nature without any decay. Adding loss S
shifts the eigenvalues away from the imaginary axis in a region of damping.
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Perfectly Matched Layer 4
4.1 Introduction

In our approach to create the discretized equation for an open system, we have so
far obtained a model on a finite domain with Perfectly Electrically Conducting (PEC)
boundary conditions. However, there is an inherent problem with the model because of
the truncation of the open domain with PEC conditions, which results in outgoing waves
getting reflected from the boundary. This is unlike the open system that was discussed
in chapter 2, where the waves propagate to infinity. This chapter addresses the issue by
implementing an absorbing layer at the boundary which attenuates the outgoing waves
with minimal reflections. The chapter begins with a brief introduction to Perfectly
Matched Layer (PML) and its history along with the mathematical definition following
which it is applied to the Maxwell equations. Finally, the modified Maxwell equations
are discretized to provide us with a model whose behavior is similar to the open slab
system from chapter 2.

4.2 PML

Initially, the reflections were avoided by putting an absorbing boundary condition by
simply making the reflection coefficient zero for the normally incident waves. This
method was later on improved by using an absorbing layer occupying a portion of the
simulation volume to absorb the outgoing waves. However, this method was dependent
on the angle and the frequency of the wave hitting the layer. The reflections could
only be avoided for waves hitting the boundary at certain angles until Berenger came
up with a better technique of using PML, which was independent of the incident angle
[1]. Berenger’s PML was later extended to 3-dimensions by introducing the stretched-
coordinate approach [2]. The idea behind the approach is to introduce loss in the region
near the boundary by extending the space outside the region of interest in the complex
domain [7].
In this paper, we use a stretched-coordinate PML function as the absorbing layer. In
the PML layer, the waves propagating in y direction is continued to the complex domain
via a stretching function to introduce attenuation. The stretching function used here
is:

Xy(y, s) = Ky(y) +
ζy(y)

s
(4.1)

where,

Ky(y) = 1; ζy(y) = 0
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for x ∈ (dx, lx − dx) (inside the target region) and

Ky(y) = 1; ζ(y) = αy2 (4.2)

for y ∈ PML region. The attenuation function ζ(y) = αy2 is chosen to be quadratic to
provide a smooth transition from the medium to the PML, thus keeping the reflection
due to a change in boundary to a minimum. The strength of PML depends upon the
magnitude of Xy(y, s) in the PML area and the PML length dx. If the PML is required to
be of small length, then α needs to be high to cause rapid exponential decay. However,
using a high magnitude for α in a small PML area can cause numerical reflections due
to discretization and reflections due to a rapid change in the boundary. Therefore, a
suitable value needs to be chosen for the PML length dx and the PML constant α [7].

4.2.1 Modified Maxwell equations

The stretching function is applied to the differential operator in the spatial domain at
the boundary area, which results in dampening of the fields in that region, making it
seem like that the boundaries have been stretched to infinity:

X−1y ∂yEz + sµrHx = −Kextx (4.3)

and

X−1y ∂yHx + σEz + sεrEz = −J ext
z , (4.4)

where Xx(x, s) is called the stretching function and is defined in equations 4.1 and 4.2.
To make the differential operator independent of the stretching function, the modi-

fied equations are multiplied throughout with X−1y to get the following set of modified
Maxwell equations:

∂yEz + XysµrHx = −XyKextx

and

∂yHx + XyσEz + XysεrEz = −XyJ ext
z

Now, since the sources Kx and Jz lie outside the PML area

XyJ ext
z = J ext

z

and
X−1y Kextx = Kextx

Also, for the terms involving electric permittivity and magnetic permeability (last term
on the left hand side of both the equations), the expressions can be modified to make
the equations linear in s by multiplying it with the PML function X :

XysµrHx = s

(
1 +

ζy(y)

s

)
µrHx = ζy(y)µrHx + sµrHx

Xysεrξz = s

(
1 +

ζy(y)

s

)
εrEz = ζy(y)εrξz + sεrξz
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However, the same method cannot be applied to the current density term XyσEz, be-
cause the non-linear term 1

s
in the PML function doesn’t cancel out after the multipli-

cation as seen below: (
1 +

ζy(y)

s

)
σEz = σEz +

ζy(y)

s
σEz (4.5)

To account for the nonlinear 1
s

term in equation 4.5, we draw up two scenarios:

• Scenario 1: The slab is inside a lossy medium whose area is larger than the
simulation domain of length L and the PML region has σ 6= 0

• Scenario 2: The simulation setting extends till vacuum. In this way, PML is set
up in a region where σ = 0.

Modeling the Maxwell equations in scenario one is more difficult than the second one
because of the non-linearity in s. In such a case, to eliminate the 1

s
dependence of the

equation in the term ζx(x)
s
σEz, a new state Uz is introduced so that

Uz =
ζx(x)

s
σEz

=⇒ sUz = ζx(x)σEz (4.6)

Using the new state, the modified Maxwell equations can be rewritten as

∂yHx + σEz + Uz + ζx(x)εrξz + sεrEz = J ext
z (4.7)

∂yEz + ζx(x)µrHx + sµrHx = Kextx (4.8)

sUz − ζx(x)σEz = 0 (4.9)

Since we are working in the second scenario where the slab is surrounded by vacuum
with a relative permittivity εr = 1 and σ = 0, we do not have to deal with the third state
Uz. In the PML region, which is placed in the vacuum, σ = 0 and in the area where slab

is present, ζx(x) = 0. Therefore the term ζx(x)
s
σ = 0 for the entire simulation region and(

1 + ζx(x)
s

)
σEz reduces to σEz. The equations can be even more simplified by noting

that εr = 1 and µr = 1 in the PML area and therefore the term ζy(y)εrEz = ζy(y)Ez
and ζy(y)µrHx = ζy(y)Hx Using the setting in the scenario two, the modified Maxwell
equations can be written as:

∂yHx + σEz + ζy(y)εrEz + sεrEz = J ext
z (4.10)

∂yEz + ζy(y)µrHx + sµrHx = Kextx (4.11)

An interesting observation from the equation 4.10 can be made by putting together
the terms involving field value Ez independent of s which is (σ + ζy)Ez. From this
grouping, it is seen that ζx is essentially the loss in the system just like σ but local only
to the PML region. This causes waves to attenuate as soon as the fields hit the PML
boundary. This behavior is the same as putting another medium with a loss near the
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boundary which will cause reflections. For this reason, a quadratic function is used for
the PML function to avoid the presence of a hard boundary.
When discretized, the above equations are written as:

Ŷ hx +Mσez +Mζez + sMεez = −jextz

Y ez + M̂ζhx +Mµ∂thx = −kextz

The above equations can also be written in the matrix form as

(D + P + S +Ms)f = −q,

where

D =

[
0 Ŷ
Y 0

]
, P =

[
Mζ 0

0 M̂ζ

]
, S =

[
Mσ 0
0 0

]
, and M =

[
εr 0
0 µr

]
On multiplying the above equation by M−1, it is obtained that:(

M−1(D + P + S) + sI
)
f = −M−1q

=⇒ (A+ sI)f = −b,
(4.12)

where A = M−1(D + P + S) and b = M−1q
Therefore, we obtain the same state space form that we did in the discretization

without a PML in chapter 3. With this formulation, we have finally created a discrete
truncated model of an open system which is ready for simulation. After the addition
of stretched-coordinate PML, the waves inside the PML layer would decay near the
boundaries, thus simulating the extension to infinity making our discretized model an
open system. Now that we have introduced loss in the system, eigenvalues of the system
matrix will be complex, where the imaginary part is the damping and the corresponding
eigenvectors are the QNMs. The solution space can now be expanded in terms of QNMs.
From our previous discussion, we know that the QNMs corresponding to the frequencies
present in the input signal dominate the solution. In the next section, we will develop
a mathematical intuition of the concept.

4.3 Dominant QNMs

To see how some modes are more dominant compared to the others for different input
frequencies, we expand our solution as a linear combination of the QNMs using the
eigenvalue decomposition of A as shown below:

(A+ sI)u = b

=⇒ V (Λ + sI)V −1u = b

=⇒ u = V (Λ + sI)−1V −1b

=⇒ u = V (Λ + sI)−1c
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where c is a column vector.
Multiplying V =

[
V1 V2 · · · Vn

]
with the column vector

1
λ1+s

0 · · · 0

0 1
λ2+s

· · · 0
...

...
0 0 · · · 1

λN+s

 c, it is obtained that:

u =
n∑
i=1

ci ·
1

λi + s
Vi

From the above equation, it is seen that the solution space of u(s) is spanned by the
eigenvectors of the system matrix A. The scalar coefficient 1

λi+s
blows up in magnitude

when λi → −s, and the eigenvector Vi corresponding to such λi will have the most
dominant contribution towards the solution space.

It has indeed been found experimentally that these dominant eigenmodes exist and
for some open resonant system, they can accurately determine the system response
for a wide range of inputs. The reduced subset of eigenmodes which are very few
in numbers for some systems and their corresponding eigenvalues λR (R stands for
reduced) is the idea behind creating a reduced order model which can help in reducing
the computational cost by several orders of magnitude.
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Results 5
In this chapter, we discuss the results obtained for different parameters in our dis-
cretized model. We begin by listing down the system parameters that were used in
designing the system. The solutions using the analytical approach and the Finite-
Difference approach has been shown in section 5.2. The solutions are shown to verify
the validity of the discrete model by comparing it with the analytical solution.

In the subsequent sections, we look at how the eigenvalue distribution evolves for
different system parameters in order to identify the PML and Quasi-Normal Modes.
These eigenvalues will be compared with the scattering poles of the open slab system
that were obtained in chapter 2.

To continue with the identification problem, we look at the PML as a lossy medium
and compare the PML modes with eigenvectors associated with a lossy slab medium
in section 5.5. We finish this chapter by using the identified QNMs to generate the
wave-fields and compare it with the solution obtained through the Finite-Difference
method.

5.1 System Parameters

In designing the discretized version of the slab system, the following parameters were
chosen:

• Central frequency ω of the input pulse

• Length of the simulation region

• Number of discrete points on the system N

• Length of the PML layer on either side

• PML strength coefficient α

• Input pulse location

• Location yslab where the slab medium begins (figure 2.1)

• Slab width

• Permittivity profile of the slab given by the matrix M

• Electrical conductivity σ

While some of the parameters were kept fixed such as the location of the input pulse
and the slab medium, others were used as variables to identify the properties of the
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Figure 5.1: Input pulse and Fourier transform

system. The values chosen for this experiment and the rationale behind them has been
described below.

Input Pulse:
The first step in the design process is to choose a frequency around which other param-
eters will be set up. This frequency was chosen in the region of the visible spectrum as
ω = 4.5 × 1014 Hz and corresponding wavelength is λ = c

µ
= 667 nm. An input pulse

with a small bandwidth is generated at time t = 0 so that the chosen frequency ω is
contained in the Fourier transform of the pulse. The input is chosen to be a derivative
of the Gaussian pulse, evaluated at time t = 0 as shown in figure 5.1. The normalized
central frequency calculated according to chapter 3 is ωnorm = 37.

Length of the simulation region:
The length of the simulation space is chosen to be at least twenty times the central
wavelength of the spectrum of the input pulse. This length is chosen to be small for
faster simulation while making sure that there is sufficient spacing between PML area
and the slab system. The length of the system is therefore:

L = 13 µm,

The length of the system on the normalized scale is 1.

• From this point the distance will be used in the unit of either the number of
discretization points or in mm which is on the normalized scale (section 3) as per
convenience.
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Number of sampling points N
The number of sampling points is chosen so that it is significantly greater than the
normalized central frequency. In our case, it is chosen to be one thousand unless stated
otherwise.

PML Layer:
The length of the PML layer required in a system depends on the geometry and compo-
sition of the system and the wavelength of the EM waves used. A small number of grid
points is desired for the purpose because the area of interest for the experimentation
is the region without the PML layer. After experimenting with different length of the
PML, the PML length was chosen to be four times the central wavelength on either
side which is 200 discretization points.
In the PML function

χy(y, s) = 1 +
ζ(y)

jω

where,
ζ(y) = αy2,

a scaling factor of α = 50 is used to improve the dampening strength of the PML
of a given thickness. A plot of the absolute of the stretching function used for initial
simulation is shown in figure 5.2.

Input pulse is chosen to be located at a distance of discretization point 350 from the
origin (figure 2.1). The slab is placed in the middle of the simulation area starting
from the discretization point 500 with a slab width of 100. Permittivity of the slab
material is chosen as ε2 = 4 (figure 2.1). Electrical conductivity is chosen as σ = 0
for the lossless case and σ = 30 for the lossy case unless stated otherwise.
We will begin the initial simulation with the values mentioned above.

5.2 Analytical and Finite Difference Solutions

The analytical solution obtained using the above values has been shown in figure 5.3
for the lossy case (σ = 30) and in figure 5.4 for the lossless case. It is seen that the
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Figure 5.3: Simulated field using the above values for the analytical solution for the lossy case
(σ = 0)

field values attenuate after crossing the slab medium in the lossy case. The scattering
poles for the lossless case are shown in fig 5.5.

We will use the solution obtained using the analytical method to validate the output
of Finite-Difference solution. Solving for the discretized equation, the electric and
magnetic field obtained is plotted in figure 5.6. In the Finite-Difference implementation,
our system is surrounded by a perfectly conducting material which is why the field
values at the boundaries are zero. The region with the decaying absolute field is the
slab area. A PML length of 200 grid points was used for the simulation and as seen in
figure 5.6, the field values appear to decay on both sides in the PML region. Similar
decay pattern is observed when the waves pass through the slab medium. It is because
much like a lossy medium, the PML is a region of higher loss designed to attenuate the
outgoing waves with minimal reflections. The real part of the electric field is smooth
everywhere except at the source location. Magnetic field suffers discontinuity at the
source location as seen in figure 5.6. This discontinuity can be explained by looking at
the Maxwell equation which describes the spatial behavior of the magnetic field:

∂yHx + εr∂tEz = −J ext
z

At the source location, Ez = 0 and therefore, ∂yHx = −J ext
z which is the magnitude

of the electric current at the location. Thus,

Hsource −Hsource+ > δ

where δ > 0 is a finite number, which explains the discontinuity seen in figure 5.6.
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Figure 5.4: Simulated field using the above values for the analytical solution for the lossless
case (σ = 0)
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Figure 5.5: Scattering poles of the analytical solution for the lossless case
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Figure 5.6: Electric and magnetic field in the system with the slab present between grid point
N = 500 and N = 600 having permittivity 4 which is excited by a light wave of frequency
4.5× 1014

The wave-field solution, non-differentiability at the source and decay inside the slab
medium observed in this case is similar to the analytical solution seen above. Now
that we have confirmed the validity of the discrete model, we will proceed to the QNM
identification problem in the next section.

5.3 Identifying modes by changing the system parameters

Among all the eigenmodes, we have QNMs, PML modes, and modes that were created
due to discretization. In this section, we try to cluster such modes by varying the
parameters defining the system. In doing so, we observe the shift in eigenvalue distri-
bution and spread of the corresponding modes. The change in eigenvalue distribution
is also compared with the scattering poles of the open system along which the QNMs
may lie.

5.3.1 Slab Width

We begin by using the slab width as our variable parameter. One end of the slab is
fixed at the discretization point 500 while the other end shifts to the right as slab width
is increased. In this analysis, we observe the shift in eigenvalues, their eigenvectors and
develop an intuition of a possible structure of the QNMs and PML modes. A plot
of eigenvalues of the system matrix for four different slab widths is shown in figure
5.7. It is seen from the figure 5.7a, 5.7b and 5.7c that as the slab widths are increased,
eigenvalues which overlap with the scattering poles start shifting towards the imaginary
axis while another set of eigenvalues start shifting away from the imaginary axis towards
a region of higher damping.
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To understand what the different bands of the eigenvalues in figure 5.7c mean, we look
at the eigenvectors corresponding to different regions of the eigenvalue plot in figure 5.8.
The different regions we consider in this case are the three stripes running vertically
and the horizontal stripe of sparsely spaced out eigenvalues. A plot of eigenvectors for
eigenvalues from these regions is shown in figure 5.8. An eigenvector corresponding to
the leftmost stripe overlapping with the scattering poles of the system matrix is shown in
figure 5.8a. The eigenvector extending in both the direction is seen to be diverging with
distance as expected from a QNM. The wave attenuates near the boundary because
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Figure 5.7: A plot of scattering poles against the eigenvalues of the system matrix A for
different slab widths. As the slab width is varied from the number of discretization points
of 100 to 350, it is seen that the QNMs which overlaps with scattering poles starts shifting
towards the imaginary axis while the poles due to discretization start shifting away from the
imaginary axis towards a region of higher damping. It is thus concluded that the poles which
do not change are the PML modes of the system.

of the PML layer. Figure 5.8b and 5.8c are the eigenvectors corresponding to the
eigenvalues in the middle and the right stripe of the eigenvalue plot respectively. These
vectors show waves travelling in left and right directions from the point the slab begins
and ends respectively. Again, as expected, as the slab width is increased, the rightmost
stripe will move to a region of higher damping because the wave travelling towards the
right is travelling a larger distance in the lossy medium than the waves travelling to
the left. This explains why the second stripe stayed static while the rightmost stripe
moved as slab width was increased. Finally, the conclusion that can be drawn after
looking at the eigenvector in figure 5.8d is that they correspond to the PML modes.
These eigenvectors are localized in the PML area and the corresponding eigenvalues are
unaffected by the shift in slab width. From these results, we also claim that the modes
corresponding to the eigenvalues overlapping with the scattering poles are the QNMs
of the system. Further analysis of the PML modes will be carried out by looking at the
shift in eigenvalues by changing the PML parameters which will be discussed later.
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(a) The eigenvector corresponding to the
eigenvalue overlapping with the scattering
poles of the slab system. They are the QNMs
of the discretized system.
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(b) Eigenvector from the middle stripe shows
wave travelling in the left direction from the
slab location. These eigenvectors are unaf-
fected by the increase in slab width
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(c) Eigenvector showing wave travelling to the
right. As slab width is increased in the right
direction, the eigenvalues shift towards the
right in a a region of higher damping.
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(d) The eigenvector is one of the PML modes
of the system. These eigenvectors are localized
in the PML region.

Figure 5.8: Eigenvectors corresponding to some of the eigenvalues calculated for the slab
width of 350mm. The top-left eigenvector is for the eigenvalue 7+176i which is the middle
stripe in figure 5.7c. The top-right corresponds to the eigenvalue from the right stripe and the
bottom-left is from the stripe coinciding with the scattering poles of the system. The bottom-
right eigenvectors is the suspected PML mode and corresponds to the sparsely distributed
eigenvalue stripe on the top (28+1975i).
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(b) N = 8000
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(c) N = 1000
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Figure 5.9: A plot of eigenvalues of the system matrix for the different number of sampling
points N . The density of eigenvalues around the QNM region increase much more than those
in the region of PML modes.

5.3.2 Number of discretization points N

Now that we have seen the effect of changing slab width on the eigenvalues of the system,
we will look at the impact of the number of sampling points. We use N = 400, 800, 1000
and 2000 to draw out the comparison. From previous results, we have claimed that
the horizontal stripe of sparsely distributed eigenvalues is the region of PML while the
scattering poles overlapping with the rest are QNMs. It is expected that by increasing
N , the discrete model will approximate the true solution which can be concluded from
figure 5.9. It is seen that increasing N creates more eigenvalues in the region of QNMs
than in the region of PML modes.
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5.4 Understanding effect of PML Length

In the previous sections, we saw the change in eigenvalue distribution and the cor-
responding eigenvectors as the system parameters were varied. We also managed to
obtain an idea of the structure of eigenvectors corresponding to the PML modes. In
this section, we see how changing the PML parameters can affect the spectrum and we
study the eigenvectors to further our claim from the previous sections on the clustering
of different regions. In figure 5.10, there are four different plots corresponding to differ-
ent PML lengths. Increasing the PML length does not change the scattering poles or
the overlapping eigenvalues of the system matrix A which are the QNMs of the system.
The stripe moving to the right is because of the same reason as was seen for figure 5.8.
The eigenvectors with waves travelling in the left and right direction begin to fall inside
the PML region as PML length is increased. These eigenvalues get separated from the
rest as the more area of the system falls into the region of higher damping.

It can be thus concluded that the horizontal stripe of eigenvalues correspond to the
PML modes because only these eigenvalues are affected on increasing the PML length.
From the previous section, we know that the corresponding eigenvectors are localized
in the PML region. These modes separate once the parameters associated with the
property begins to dominate over other parameters of the system. This is true for a
PML because it is required to decay the wave in a small region by design. Thus, the
corresponding eigenvalues can be found by locating the group of eigenvalues separate
from the rest and whose eigenvectors are localized in the PML region.
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(a) PML length = 100 discretization points.

0 10 20 30 40 50 60 70 80 90

Real( )

-2000

-1500

-1000

-500

0

500

1000

1500

2000

Im
a
g
(

)

Eigenvalues of the system matrix for PML Length 125

Eigenvalue of system matrix

Scattering poles of the analytical equation for PML Length 125

(b) PML length = 125 discretization points.
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(c) PML length = 166 discretization points.
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Figure 5.10: Eigenvalue plot of the system matrix when using different lengths for the PML
area. It is observed that approximation of scattering poles by the system matrix is limited
by the length of the PML.
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5.5 Visual Inspection of Eigenmodes

We continue from the last section by reflecting on some of the conclusions that were
drawn based on our observations. In this section we will look at the spread of eigen-
vectors in different regions of the eigenvalue plot. We begin with a visual inspection
of the eigenmodes for different eigenvalues to see how PML modes look different from
the QNMs. Figure 5.11 shows a plot of eigenvalues and the eigenvectors for a selec-
tion of eigenvalues. The colorbar represents the extent of energy that is present in the
eigenvector for the entire system excluding the PML area.

The eigenvalues on the horizontal axis on the top and the bottom correspond to
the PML modes. These eigenvalues have eigenvectors localized in the PML region and
therefore have lower energy compared to the other region in the plot which can be seen
from the eigenvector plot in the same figure. One characteristic of these modes is that
they are more spaced out than the relatively denser eigenvalues of the system.

We will also see the effect of electrical conductivity σ on the eigenvalue spectrum.
Since PML behaves as a lossy medium, we expect that the eigenvalues and eigenvec-
tors corresponding to the slab medium which is affected by σ should have a structure
similar to the PML modes. For further validation of the conclusions drawn upon the
characteristics associated with the PML modes, we continue the analysis in the slab
region using a high σ. We look at the shift in eigenvalues for different σ’s and to make
the plot readable, we use a smaller N = 400. From figure 5.12, it can be verified,
that only a portion of the eigenvalue distribution is changing when the parameter σ
is varied. These are the same eigenvalues corresponding to which the eigenvectors are
localized in the lossy slab area as seen in figure 5.13. It can also be seen that these
eigenvalues are much less dense than other groups in the eigenvalue plot (figure 5.12)
much like how it was observed for the PML modes.

After looking at similar behavior exhibited by the PML modes and the lossy slab
modes (modes localized in the slab medium), we have concluded that modes in a
lossy region like a PML will be localized and the corresponding eigenvalues will be
sparsely populated separated from the rest of the modes. However, this kind of localized
behavior is seen only when the loss in the region is significantly greater than in other
regions. This makes sense because if the parameters pertaining to separate regions are
not considerably different, there will not be a significant difference in the behavior of
those regions. However, this is not a problem as far as the identification of the PML
modes are concerned because the PML is designed in such a way that the attenuation
in that region is much more than the rest of the system so that the wave decays
exponentially in the small PML area. Therefore, it can be said that the PML modes can
be identified by looking at the sparsely spaced set of eigenvalues and their corresponding
eigenmodes which will be localized in the PML area.
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Figure 5.11: Eigenvectors corresponding to different eigenvalues. The top-right corner is the
one corresponding to one of the PML modes while the center-right is a mode corresponding
the eigenvalue overlapping with the analytical scattering pole. The colorbar on the eigenvalue
plot represents the energy in the signal present in the non-PML area. It is interesting to see
that while the eigenvectors for the QNMs are spread over the entire region (center right), the
PML modes are localized in the PML region(center right).
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(a) Sigma = 11 (b) Sigma = 44

(c) Sigma = 77 (d) Sigma = 100

Figure 5.12: A plot of real vs imaginary part of eigenvalues for different sigmas. It is seen
that only the eigenvalues related to the region of the slab are shifting with changing sigmas
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Figure 5.13: Eiegnvector corresponding to the eigenvalue in the slab area. For a large σ, the
eigenvalues separate and the corresponding eigenvectors are localized in the slab region.
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(a) PML Strength = 66 (b) PML Strength = 88

(c) PML Strength = 111 (d) PML Strength = 155

Figure 5.14: A plot of real vs imaginary part of eigenvalues for different PML strength α.
Some of the eigenvalues on the horizontal stripe correspond to the PML modes while some
to the slab area.

We perform a similar experiment with the PML parameter α for N = 400 and
σ = 300 where we observe the shift in eigenvalues. In this experiment, we expect
to have both the PML modes and the modes associated with the slab medium to
separate, since these regions have significantly greater loss than the other regions in
the system. It is seen that initially (figure 5.14a) when all the values are comparable,
there is no clear distinction between different areas and there are still reflections from
the boundary. The eigenvalues on the top and bottom correspond to the slab region
and the eigenvector look similar to figure 5.13. As PML strength is increased, more
eigenvalues start separating. To verify that the eigenvalues separating are indeed the
PML modes, the corresponding eigenvector of one of the eigenvalues from figure 5.14d
is observed in figure 5.15 which is found to be localized in the PML area.

With this result, we finish our study on the parameters of the system. We have now
clustered different regions of the eigenvalue distribution and now we can test whether
the QNM region by itself is sufficient to get the solution or not in the next section.
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Figure 5.15: Eigenvector corresponding to one of the eigenvalues from the figure 5.14c.
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5.6 Some results on selecting bands of eigenmodes

In the previous sections, we identified the set of eigenvalues whose eigenvectors are the
QNMs and managed to find a structure for the PML modes. In this section, we see how
good the eigenmodes which were identified as QNMs are in reconstructing the original
solution. For this purpose, we will use four different bands of eigenvalues:

• Both end of the spectrum excluding the horizontal stripe of PML modes (Eigen-
values with imaginary part ranging from -1000 to 1000)

• Eigenvalues with the positive imaginary part

• Eigenvalues with the negative imaginary part

• Entire spectrum of eigenvalues excluding the region around the frequency of the
input pulse

A plot of results obtained through Finite Difference for the frequency ω = 4.5×1014

has been shown in figure 5.6 for the comparison purpose.
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Figure 5.16: Electric field and Magnetic field obtained when both the positive and negative
eigenvalues are used for the calculation.

Through previous experiments, it was seen that the eigenvalues of interest are in
the low-frequency area and the sparsely populated modes on the top and the bottom
are the PML modes. To see if it is indeed true or not, we try to get the solution using
only those modes, the corresponding eigenvalues of which has imaginary values between
-1000 and 1000. The obtained solution in figure 5.16 is a close approximation to the
true solution, thereby highlighting the role of QNMs.

While the limited number of eigenvalues is enough to construct a solution as seen
in figure 5.16, what will happen if either only the positive or negative eigenvalues
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Figure 5.17: When only the positive eigenmodes are used, the solution obtained does not com-
pare well with the Finite Difference solution at all. This is because the dominant eigenmode
in our case lies in the range 0 to -30.

are used? From the previous mathematical analysis, it has been established that the
dominant eigenmodes are those whose eigenvalue λ→ −jω, where ω is a frequency in
the bandwidth of the input pulse. If only the positive eigenvalues are being used, it
should not be possible to get an approximate solution, which can be seen from figure
5.17. Here, the entire range of modes whose imaginary part of the eigenvalue is greater
than zero is used.

Next comes the case where only the eigenmodes with negative eigenvalues are used.
As expected, although the solution is not as good as using both ends of the spectrum,
it is a good approximation of the original solution (figure 5.18).

Now, on to the case, where the entire spectrum of eigenvalues is used except a very
narrow band which contains the QNM corresponding to the frequency of the input pulse.
It is not surprising to see from the figure 5.19, that although almost the entire spectrum
is being used, the solution is still nowhere close to the actual one. It emphasizes on
the importance of dominant QNMs and how a small set of modes represent the entire
resonant system.

From these results, it can be seen it is possible to obtain a reduced-order model for
the system. Although, the slab system discussed in this paper is easy to implement
and solve for analytically, it does not have a finite set of scattering poles which makes
it difficult to use for analysis in the subject at hand. Systems such as gold film used as
nano-resonators have a very small set of frequencies which acts as QNMs and for such
system, it is possible to significantly reduce the order.
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Figure 5.18: When only the negative eigenmodes are used, the solution is much closer to the
Finite Difference solution, although still not as good as when both the positive and negative
modes are used.
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Figure 5.19: When the dominant eigenmodes whose imaginary values lie around the region
-150 to 150 are removed, then no matter how many eigenvalues are chosen, a solution close
to the one obtained through Finite Difference method is not reached.
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Conclusion 6
The behavior of the system governed by Maxwell’s equations was observed in this report
for different parameter values. It was seen that changing the system parameters only
affected a certain set of eigenvalues specific to the region linked with those parameters.
Also, the eigenvectors corresponding to these eigenvalues were concentrated in specific
regions instead of being spread out to the whole space. This is an important result
when localized eigenvectors are desired for specific applications.

The behavior of the PML region was established to be similar to the region of the
lossy medium. In the process, the structure of the associated mode was found to be
localized in the respective region of the loss. It was further observed that when the PML
strength or the loss (σ when looking at the slab region) is not high, there is no visible
separation between the modes and the eigenvectors are not localized. Changing the loss
parameters shifts the entire range of eigenvalues until a point where eigenvectors start
getting localized to the region and further increasing the loss results in a shift in only
the associated eigenvalues. When it comes to the identification of the PML modes, the
PML parameters is chosen to be higher in magnitude compared to the parameters of
other regions. This facilitates the attenuation of the outgoing waves in a small region.
Therefore, it can be concluded that PML modes will be localized and separated from
the rest of the modes in a practical simulation environment.

Furthermore, it was observed that reconstructing the solution using only a part of
the entire spectrum of eigenvalues were possible only when the eigenmode corresponding
to the input frequency was considered which further verified the validity of dominant
Quasi-Normal Modes. Though the system considered here is geometrically simple, it
has an infinite set of scattering poles parallel to the imaginary axis and therefore is not
suitable for simulations related to the QNMs. A more complicated system possessing
only a small set of scattering poles will be a much better choice and can reveal more
appealing results in the identification of QNMs.

Future work on this thesis may involve exploiting the sparsely distributed nature of
the PML modes. A suitable filter can also be used because a notion of the structure of
the PML modes have been developed in the sense that they are localized in the PML
region.
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